binäre Codierungen

Dez	Hex	Dual	Gray	Aiken	Exzeß3	1 aus 10	2 aus 5	Libaw-Craig	Hamming
0	0	0000	0000	0000	0011	0000000001	00011	00000	0000000
1	1	0001	0001	0001	0100	0000000010	00101	00001	0000111
2	2	0010	0011	0010	0101	000000100	00110	00011	0011001
3	3	0011	0010	0011	0110	000001000	01001	00111	0011110
4	4	0100	0110	0100	0111	0000010000	01010	01111	0101010
5	5	0101	0111	1011	1000	0000100000	01100	11111	0101101
6	6	0110	0101	1100	1001	0001000000	10001	11110	0110011
7	7	0111	0100	1101	1010	0010000000	10010	11100	0110100
8	8	1000	1100	1110	1011	0100000000	10100	11000	1001011
9	9	1001	1101	1111	1100	1000000000	11000	10000	1001100
10	A	1010	1111						1010010
11	В	1011	1110						1010101
12	С	1100	1010						1100001
13	D	1101	1011						1100110
14	Е	1110	1001						1111000
15	F	1111	1000						1111111

Normalformen Boolscher Funktionen

kDNF (Minterm)	$ab\overline{c} + a\overline{b}c = 1$	aus KV für jede 1 einen eigenen Term realisieren
DNF	$ab + b\overline{c} = 1$	zusammenhängende 1-Gebiete aus KV als Term realisieren
kKNF (Maxterm)	$(a+b)(\overline{a}+b)=0$	für jede 0 einen DNF-Term realisieren und dann invertieren

Hazards

In disjunktiven Normalformen können Nullhazards nach der fallenden Flanke eines Signals auftreten. In konjunktiven Normalformen können Einshazards nach der steigenden Flanke eines Signals auftreten. (Kontrollieren, wo sich im KV-Diagramm benachbarte Kreise befinden!)

 $\ddot{\mathbf{U}}\mathbf{bergangstabelle}$

S^i	R^i	J^i	K^i	D^i	T^i	Q^{i+1}	Betriebsart
0	0	0	0	-	0	Q^i	Speichern
0	1	0	1	0	-	0	Rücksetzen
1	0	1	0	1	-	1	Setzen
-	-	1	1	-	1	\overline{Q}^i	Umschalten
1	1	-	-	-	-	?	verletzte NB

 $\underline{\mathbf{Ansteuertabelle}}$

Anst	euerta	репе	!				
Q^i	Q^{i+1}	S^i	R^i	J^i	K^i	D^i	Betriebsart
0	0	0	d	0	d	0	Speichern oder Rücksetzen
0	1	1	0	1	d	1	Setzen oder Umschalten
1	0	0	1	d	1	0	Rücksetzen oder Umschalten
1	1	d	0	d	0	1	Speichern oder Setzen

Codierungen im KV - Diagramm

Dezimalcode

	x	3			
<i>m</i> -	12	14	6	4	
x_2	13	15	7	5	<i>m</i> -
	9	11	3	1	x_0
	8	10	2	0	
		x_1	1		•

			1		x_4
	x	3			
	28	30	22	20	
x_2	29	31	23	21	
	25	27	19	17	x_0
	24	26	18	16	
		x	1		

			ı		
	x	3			
or -	12	14	6	4	
x_2	13	15	7	5	<i>m</i> -
	9	11	3	1	x_0
	8	10	2	0	
		x_1	1		

Gray code

J			ı		
	x	3			
or -	8	11	4	7	
x_2	9	10	5	6	<i>m</i> -
	14	13	2	1	x_0
	15	12	3	0	
		x_1	L		

Dualcode - Graycode - Umcodierung

$$g_n = d_n$$

$$q_{n-1} = d_n \oplus d_{n-1}$$

$$g_{n-1} = d_n \oplus d_{n-1}$$
 $g_{n-2} = d_{n-1} \oplus d_{n-2}$

$$g_0 = d_1 \oplus d_0$$

Quine McCluskey

- 1. umformen der gegebenen Funktion in die Mintermform
- 2. a) erstellen einer senkrechten Tabelle aller Minterme, sortiert nach Anzahl der Negationen
 - b) Zusammenfassungen nach dem Muster $x \overline{y} + x y = x$ (mehrfach hintereinander)
 - c) erstellen der Funktion aus nicht weiter zusammenfaßbaren Primtermen
- 3. aufstellen der Primterm-Minterm-Tabelle: Primterme waagrecht, Minterme senkrecht, * bei Erfassung des Minterms durch den Primterm
- 4. Zeilen mit nur einem * bestimmen den jeweiligen Primterm zum Hauptterm (Ergebnisterm)
- 5. streichen der Spalten der Hauptterme und aller von ihnen erfaßten Minterme; die Hauptterme gehören zur gesuchten Funktion
- 6. weglassen doppelt erfaßter Minterme (in ihrer Zeile steht mindestens dort überall eine *, wo auch genau eine andere Zeile ein * hat)
- 7. weglassen von Primtermen ohne * in der Spalte
- 8. weglassen ungünstiger Primterme, die in ihrer Spalte nur * haben, die von den * kürzerer Primterme überdeckt werden
- 9. wiederholen ab 4. (Hauptterme 2. Art), bis keine Änderung mehr auftritt
- 10. auswählen der einfachsten Kombination der verbliebenen Primterme

Multiplikation

gegeben seien zwei $n\mathrm{-Bit}\mathrm{-Zahlen}\colon \mathrm{MSB}$ entspricht dem Vorzeichen

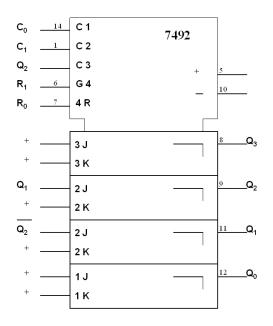
$$A(n) = a_{n-1} a_{n-2} \dots a_2 a_1 a_0 = -a_{n-1} 2^{n-1} + \sum_{i=0}^{n-2} a_i 2^i$$

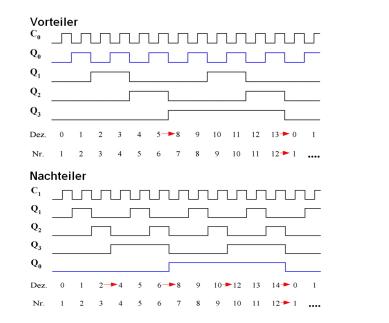
$$B(n) = b_{n-1} b_{n-2} \dots b_2 b_1 b_0 = -b_{n-1} 2^{n-1} + \sum_{j=0}^{n-2} b_j 2^j$$

$$P(2n) = p_{2n-1} p_{2n-2} \dots p_2 p_1 p_0 = -p_{2n-1} 2^{2n-1} + \sum_{i=0}^{2n-2} p_i 2^i =$$

$$= a_{n-1} b_{n-1} 2^{2n-2} + \sum_{i=0}^{n-2} \sum_{j=0}^{n-2} a_i b_j 2^{2n-2} - 2^{n-1} \left(a_{n-1} \sum_{j=0}^{n-2} b_j 2^j + b_{n-1} \sum_{i=0}^{n-2} a_i 2^i \right) =$$

$$= E + F - G - H$$


Hammingcode


	k_3	k_2	k_1	$P_{3/2/1}$	k_0	$P_{3/2/0}$	$P_{3/1/0}$	l
--	-------	-------	-------	-------------	-------	-------------	-------------	---

Teiler mit 7492

Teiler o	ohne Re	set
Teiler	Takt	Ausgang
1:2	C_0	Q_0
1:3	C_1	Q_1
1:6	C_1	Q_2

Vorteil	er: Takt an	$C_0; C_1 = Q_0$
Teiler	Reset	Ausgang
1:4	Q_2	Q_1
1:5	$Q_0 Q_2$	Q_2
1:7	$Q_0 Q_3$	Q_3
1:8	$Q_1 Q_3$	Q_3
1:9	$Q_0 Q_1 Q_3$	Q_3
1:10	$Q_2 Q_3$	Q_3
1:11	$Q_0 Q_2 Q_3$	Q_3
1:12	standard	Q_3

grieschisches Alphabet

Zeio	hen	Beschreibung
\overline{A}	α	Alpha
B	β	Beta
Γ	γ	Gamma
Δ	δ	Delta
E	ϵ	Epsilon
Z	ζ	Zeta
H	η	Eta
Θ	θ	Theta
I	ι	Iota
K	κ	Kappa
Λ	λ	Lambda
M	μ	My
N	ν	Ny
Ξ	ξ	Xi
O	Ø	Omicron
Π	π	Pi
P	ρ	Rho
Σ	σ	Sigma
T	au	Tau
Y	v	Upsilon
Φ	φ	Phi
X	χ	Chi
Ψ	ψ	Psi
Ω	ω	Omega